1,f(θ) = (sinθ)^2 + 2sinθcosθ - (cosθ)^2
=[(sinθ)^2 + 2sinθcosθ - (cosθ)^2]/[(sinθ)^2 + (cosθ)^2]
=[(tanθ)^2 + 2tanθ - 1]/[(tanθ)^2 + 1]
=1/5
2,f(x) = (sinx)^2 + 2sinxcosx - (cosx)^2
= -cos(2x) + sin(2x)
=√2sin(2x-π/4)
对称中心为(kπ/2 + π/8,0),k是整数
最大值为√2 ,当x=kπ+3π/8,k是整数时取得