cos(π/12)+根号3sin(π/12)
=v[1²+(根号3)²][cos(π/3) cos(π/12)+sin(π/3)sin(π/12)]
=2cos[(π/3) -(π/12)]
=2cos(π/4)
=2X(v2/2)
=v2
可用公式 acosx+bsinx=v[a²+b²][cosx cosα+sinxsinα]=v[a²+b²]cos(x-α)
或acosx+bsinx=v[a²+b²][sinαcosx +cosαsinx]=v[a²+b²]sin(x+α)
祝你学习进步!
cos(π/12)+√3sin(π/12)
=2[1/2cos(π/12)+√3/2sin(π/12)]
=2[sinπ/6cosπ/12+cosπ/6sinπ/12]
=2sin(π/6+π/12)
=2sin(2π/12+π/12)
=2sin3π/12
=2sinπ/4
=2X√2/2
=√2